
CIS 565 Project Ideas

Patrick Cozzi
University of Pennsylvania

Spring 2012

CUDA Rasterization Pipeline

● Implement a rasterization pipeline in CUDA or
OpenCL. How can we make it faster than the OpenGL
pipeline?

○ Change sort-first, sort-middle, etc. based on load
○ Relax draw order constraints when it makes sense
○ Removed stages when not necessary
○ Hierarchical culling

Image from http://www.khronos.org/assets/uploads/developers/library/2011-devcon5-santa-clara/DevCon5-WebGL-WebCL-and-
Beyond_Dec11.pdf

http://www.khronos.org/assets/uploads/developers/library/2011-devcon5-santa-clara/DevCon5-WebGL-WebCL-and-Beyond_Dec11.pdf
http://www.khronos.org/assets/uploads/developers/library/2011-devcon5-santa-clara/DevCon5-WebGL-WebCL-and-Beyond_Dec11.pdf

GPU-Accelerated Crowd Simulation

● From Mubbasir: "we can greatly exploit synchronization
slack in multi-agent simulations by having agents read stale
data of other agents and still have plausible agent
behavior."

● Experience from student who tried it last
○ Abstract: http://dl.dropbox.

com/u/1851229/Temp/565/ExploitingSynchronizationSla
ckinMulti-agentSimulations.pdf

○ Report: http://dl.dropbox.
com/u/1851229/Temp/565/mark-project-report.doc

GPU-Accelerated Line of Sight

● Imagine two aircrafts flying
through mountains. During
what time intervals can they
see each other? This is
determined by casting rays
from one aircraft to the other
over a time period. Each ray
needs to quickly step through
the terrain, taking into account
Earth’s ellipsoid, and
determine if the other aircraft
is visible.

GPU-Accelerated Access

● Sensor volumes, such as those formed by a UAV’s
camera’s field of view, can be modeled using
CSG. Determining when a point moving over time is
inside the volume is called access. Given many sensors
and many points, use the GPU to exploit the parallelism in
access.

GPU-Accelerated Label Declutter

● Displaying thousands of potentially overlapping labels
creates clutter. Declutter automatically moves labels so they
do not overlap. In the general case, this is an NP-hard
problem. Can a reasonable solution be obtained with GPU-
accelerated k-means clustering? What parallelism can we
exploit? Also consider simulating this as a mass-spring
system.

Image from http://gisdk.blogspot.com/2008/09/satellites-tracked-in-google-earth.html

GPU-Accelerated Solar Panel
Temperature

● As a satellite orbits Earth, its solar panels change
temperature based on their initial temperature, exposure to
the sun, and material properties. When the panels are
obscured by Earth or other parts of the satellite, their
temperature decreases. Use the GPU to parallelize it at each
time step.

GPU Particle Trimming

● Particle trimming can improve performance by reducing
fragment load and only slightly increasing vertex load.

● Is a geometry-shader implementation worthwhile? What are
the use cases other than dynamic particles? How common
are they?

● See http://www.humus.name/index.php?
page=Comments&ID=266

Image from http://www.humus.name/index.php?page=Comments&ID=266

http://www.humus.name/index.php?page=Comments&ID=266
http://www.humus.name/index.php?page=Comments&ID=266
http://www.humus.name/index.php?page=Comments&ID=266

Multi-GPU Deferred Shading

● How do we scale rendering across multiple GPUs? How do
we load balance?

● For deferred shading, perhaps render g-buffers with one
GPU. Apply post-processing effects with the other. Are
there really any benefits to this?

● See OpenGL Insights, Programming Multi-GPU's For
Scalable Rendering

Image from http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

● There is plenty of literature on simulating and rendering
ocean surfaces, and rendering massive amounts of terrain,
but how do we simulate and render oceans at a global-
scale - from world-view to person-view? How do waves
interact with the coastline and other objects.

Image from http://outerra.blogspot.com/2011/02/ocean-rendering.html

Ocean Simulation and Rendering

http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

GPU-Accelerated Satellite Orbits

● Given thousands of satellites each with an array of
time/position pairs (think keyframes), animate the satellites
overtime using lagrange interpolation in a vertex
shader. Render using WebGL. Each array may not have
the same number of pairs or times.

Volumetric Clouds

● Render volumetric clouds with light scattering via GPU ray
casting. Clouds can come from real-world data, can be
modeled by hand, or simulated in code.

● Great chapter in Game Engine Gems 2
● Also see http://vterrain.org/Atmosphere/Clouds/

Image from http://vterrain.org/Atmosphere/Clouds/

http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

WebGL Deferred Shading

● Without multiple render targets (MRT), deferred shading is
considered too expensive; however, GPUs have come
along way since this thought.

● Even though WebGL lacks MRT, and, therefore requires
multiple geometry rendering passes, can we still implement
an efficient deferred shader in WebGL? How does it
compare to a forward shader with the same effects?

Image from http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

WebGL Profiler

● For widespread adoption, WebGL needs world-class
developer tools. WebGL Inspection is a good start: http:
//benvanik.github.com/WebGL-Inspector/.

● However, how do we profile our shaders? We want to
mouse over a pixel and see the shader hotspots.

● glsl-unit may be useful: http://code.google.com/p/glsl-
unit/w/list

Image from http://benvanik.github.com/WebGL-Inspector/

http://benvanik.github.com/WebGL-Inspector/
http://benvanik.github.com/WebGL-Inspector/
http://code.google.com/p/glsl-unit/w/list
http://code.google.com/p/glsl-unit/w/list
http://benvanik.github.com/WebGL-Inspector/

WebGL Performance

● For widespread adoption of WebGL by C++/OpenGL
developers, we need a strong set of benchmarks showing
the performance of WebGL compared to OpenGL

● This includes with/without ANGLE, vertex buffers, textures,
framebuffers, and compositing

● See OpenGL Insights, WebGL for OpenGL Developers

WebGL Secuirty

● Security holes have be found and fixed in WebGL. This
includes both Denial Of Service (DoS) attacks due to long
running draw calls, and cross-origin content leaking via
timed fragment shaders.

● Are there any other vulnerabilities we need to exploit and
fix? Are there better ways to fix the original vulnerabilities?

● http://www.khronos.org/webgl/security/

http://www.khronos.org/webgl/security/

Hybrid Client/Server Rendering

● Where is the future of thin-client visualization? Is it client-
side rendering with WebGL? Is it server-side rendering? Is
it a hybrid? If so, what rendering is done on the
server? What is done on the client? What is passed
between?

