
Linux Everywhere
A l o o k a t L i n u x o u t s i d e

t h e w o r l d o f d e s k t o p s

CIS 191 Spring 2012 – Guest Lecture by Philip Peng

1. Introduction

2. Different Platforms

3. Reasons for Linux

4. Cross-compiling

5. Case Study: iPodLinux

6. Questions

2

Lecture Outline

What’s in common?

3

• Linux is everywhere

– If its programmable, you can put Linux on it!

– Yes, even a microwave

4

All your hardware are belong to us

CES 2010, microwave running Android: http://www.handlewithlinux.com/linux-washing-cooking

• What servers use

– Stability, security, free

– Examples:

◦ CentOS

◦ Debian

◦ Red Hat

5

Servers

• What you use

– Free Windows/Mac alternative

– Examples:

◦ Ubuntu

◦ Fedora

◦ PCLinuxOS

6

Desktop

• What (white-hat) hackers do

– To run “homebrew” software

– Examples:

◦ PS3, Wii, XBOX

◦ PS2, GameCube

◦ Dreamcast

◦ PSP, DS

◦ Open Pandora, GP2X

7

Gaming Devices

• What distributors are developing

– Community contribution

– Examples

◦ Android

◦ Maemo/MeeGo/Tizen

◦ Openmoko

8

Mobile Devices

• What embedded hardware run

– Small footprint, dev tools

– Examples

◦ RTLinux (real-time)

◦ μClinux (no MMU)

◦ Ångström (everything)

9

Embedded Devices

10

Why?

11

Free!

• Free!

– As in freedom, i.e. open source

– As in beer, i.e. vs paid upgrades

12

Homebrew!

• Run own software

– Your hardware  your software?

13

Support!

• Community contribution

– “For the greater good” (i.e. users)

– Everyone contributes

◦ Specialists from all over the world

– Existing hardware support

◦ Many already supported computer architecture

◦ Modify existing drivers

14

Lots of support!

15

Why not?

• Because we can

– If its hackable, it can run Linux

16

How?

• How do we get Linux running on XXX?

• Port: A version of software modified to run on
a different target platform

– The PS3 port of Fedora is a modified build of
Fedora compiled to run on the PS3 architecture

– e.g. “I ported the Linux kernel to my iPod”

17

Cross-compiling!

• Supported hardware? Easy! Cross-compile!

• Compiler: A program that converts code to an
executable program for your computer

• Cross-compiler: A program that converts code
to an executable program for another
platform

18

Cross-compiling!

• What makes this possible?
C and gcc

– C programming language is
made to be easily portable
to different architectures

– The Linux kernel and all
basic tools are written in C

– Same source code runs of all
sorts of platforms

19

Multiple Compilers

• “arm-elf” is the architecture that runs ELF executables
(default format for Linux) on an ARM processor

• μClinux is a Linux kernel fork for microcontrollers without a
MMU (memory management unit)

20

Compiling for LFS (i368 Linux)

• Compiling tar for LFS (you did this for HW!)

wget

http://ftp.gnu.org/gnu/tar/tar-

1.26.tar.bz2

tar -xf tar-1.26.tar.bz2

cd tar-1.26

./configure

make

http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2
http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2
http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2

21

Compiling for arm-elf

• Compiling tar for arm-elf architecture
wget

http://ftp.gnu.org/gnu/tar/tar-

1.26.tar.bz2

tar -xf tar-1.26.tar.bz2

cd tar-1.26

./configure CC=arm-elf-gcc

LDFLAGS=-elf2flt –-host=arm-elf

make

http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2
http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2
http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2

22

Compiling for arm-elf

• # ./configure CC=arm-elf-gcc LDFLAGS=-

elf2flt –-host=arm-elf

• CC=arm-elf-gcc

– Specify the “cross-compiler” to be used

• LDFLAGS=-elf2flt

– Set any special linking flags (e.g. target specific)

– In this case, convert ELF to bFLT format

• --host=arm-elf

– Specify the host machine that you are building for

23

Compiling for arm-elf

• Result:
• Native tar is in ELF format, cross-compiled is bFLT format

• Native tar can execute, cross-compiled tar can’t
(not on the build computer at least)

24

Cross-compiling Terminology

• Note on compiling terms: build, host, target

• Build: platform that you are building on

– Usually unspecified (since almost always Linux)

• Host: platform that you are building for

– For cross-compiling, e.g. arm-elf architecture

• Target: machine that you are building for

– For cross-compiling, only specified for special
cases with different output formats

25

That was easy!

• Review: To cross-compile Linux for a supported
platform, just add a few config flags, and
run make!

• That was easy!

=

26

But wait, there’s more!

• But what happens if you want to run Linux on
an unsupported platform?

• Too bad, you’ll have to port it yourself!

=

27

Porting Linux = Hard

• Porting Linux in a nutshell:

1. Gather as much information about the hardware

2. Reverse-engineer any currently existing software

3. Modify the cross-compiling tools to generate
binaries compatible with the new architecture

4. Modify the kernel source code to support
communicating with the various hardware
components

5. LFS all-over-again! (Except it probably won’t
work the first time, or even the second)

28

Porting Linux = Hard

• Porting Linux minimum requirements:

– C programming

– Linux (CIS 191)

– Compilers (CIS 341)

– OS concepts (CIS 380)

– Computer architecture (CIS 501)

– Experience with hardware debugging (e.g. JTAG)

– In-depth knowledge of the assembly language of
the target architecture (e.g. x86, ARM, MIPS, etc.)

29

Why bother?

30

So you can do this

31

Case Study: iPodLinux

32

What is iPodLinux

• iPodLinux = iPod + Linux

– Custom port of μClinux to the
old iPod hardware

– Goal to turn your iPod into
more than just an MP3 player

– Real reason: Because we can!

– Wiki: http://ipl.derpapst.eu
IRC: #ipodlinux@irc.freenode.net
Code: http://sourceforge.net/projects/ipodlinux/

http://ipl.derpapst.eu/
http://ipl.derpapst.eu/
http://ipl.derpapst.eu/
mailto:
http://sourceforge.net/projects/ipodlinux/
http://sourceforge.net/projects/ipodlinux/
http://sourceforge.net/projects/ipodlinux/

33

The Features - Software

• Customizable user interface

• File-browser and plugin support

• Music player w/ OGG & FLAC support

• Video playback with sound

• Many user-ported Linux applications and emulators

34

The Features - Hardware

• Custom graphical bootloader

• Playback of audio with piezo (scroll “clicker”)

• Audio-recording via headphone jack

• Backlight brightness control

• Overclocking CPU to 80MHz (vs Apple’s 66MHz)

35

My contribution

• Joined official dev team in 2008

– Free iPod gift? Lets hack it!

– Sansa e200 kernel patches

– podzilla2 features + bug fixes

– Experimental kernel builds

– Compiling tutorials + tools

– Wiki and forum maintenance

• See http://ipl.derpapst.eu/wiki/User:Keripo

http://ipl.derpapst.eu/wiki/User:Keripo
http://ipl.derpapst.eu/wiki/User:Keripo

36

My contribution

• Project ZeroSlackr

– Custom, non-destructive iPL
installation system

– Ported numerous third part
applications:

◦ igpSP – Gameboy Advanced emulator

◦ hDoom – original Doom video game

◦ hWolf3D – original Wolfenstein3D

◦ … and much more

• See http://sourceforge.net/projects/zeroslackr/

http://sourceforge.net/projects/zeroslackr/
http://sourceforge.net/projects/zeroslackr/
http://sourceforge.net/projects/zeroslackr/

37

History Bit: Reverse Engineering

• Problem:
No source code/documentation

• Solution:
Reverse engineer it!

– Software not encrypted, can be
dumped through hardware means

– Apple left in a Diagnostic Mode

– iPodLinux project goes live in 2003

More: http://web.archive.org/web/20070224164831/http://www.ipodlinux.org/blog/

38

History Bit: Piezo Hack

• Problem:
Can’t dump iPod 4G bootloader

• Solution:
Record it bit-by-bit!

– Use the piezo (“clicker”) to read
the bootloader code as sound

– Put iPod in sound-proof chamber

– Leave iPod on overnight, decode
the audio recording the next day

More : http://web.archive.org/web/20070519081643/http://www.ipodlinux.org/stories/piezo/

39

History Bit: We had video first!

• Problem:
Still pictures on Apple’s new iPod
Photo is boring, 2005

• Solution:
Lets add video support!

– Uncompressed, 15fps, A/V issues

– Apple responds a year later with
the iPod 5G, the “iPod video” ; (

– We did it first! Still counts!

More : http://ipl.derpapst.eu/wiki/Video_Player

40

History Bit: Nanotron 3000

• Problem:
iPod nano 2G encrypted, 2006

• Solution:
Find an exploit!

– Buffer overflow in Notes
functionality (no bound check
beyond 268 chars in <a href> links)

– Use LEGO Mindstorm to brute-
force the jump address location

More : http://www.freemyipod.org/wiki/Nanotron_3000

41

History Bit: iPhone

• Problem:
Apple releases iPhone
and iPod Touch in 2007

• Solution:
None, it was a good run ; (

– Go work on other cool projects!

– davidc (David Carne) worked on jailbreakme.com

– AriX (Ari Weinstein) worked on iJailbreak

– I work on Android and TA this course (Linux!)

More: http://www.tuaw.com/2007/10/29/instant-jailbreak-for-iphone-and-ipod-touch/
More: http://online.wsj.com/article/SB124692204445002607.html

42

Questions?

