
Philip Peng CIS 565: Project Proposal 2012/03/12

GPU-Accelerated Beat Detection for Dancing Monkeys

In music-based rhythm games such as Dance Dance Revolution (DDR), a player must accurately perform

actions based on visual patterns that match the beat of the background song. These visual patterns are often

created by manually by the game developers. This manual process can be eliminated through the usage of software

that use beat detection algorithms to aid in the automated generation of such visual patterns. The open source

program Dancing Monkeys, written by Karl O’Keefe of Imperial College London, employs beat detection to generate

DDR-style stepfiles for arbitrary songs1. In this project, I propose the modification of the beat detection algorithm in

Dancing Monkeys to take advantage of the parallel processing capabilities of the GPU.

Figure 1. Dancing Monkeys system architecture

The details of O’Keefe’s Dancing Monkeys program are outlined in his project report2. For the beat detection

portion of his project, O’Keefe implements a brute-force algorithm similar to the one described by Will Archer

Arentz’s paper, “Beat Extraction from Digital Music”3. First, a waveform is generated consisting of the highest peaks

from the song’s original waveform. This waveform is then smoothed via a low pass filter for easier analysis. The BPM

(beats per minute) of the waveform is then determined through brute force comparison tests across the range of

90-200 BPM and checked for best fit. These comparison and fit test are then repeated with narrower ranges. The

closest fit is determined to be the BPM if it falls within the acceptable error margin.

Figure 2. Arentz’s BPM determination algorithm; Dancing Monkey uses something similar

The beat detection part of Dancing Monkeys is written in MATLAB, compiled to run on the CPU, and linear in

execution. Due to the brute-force nature of the algorithm and its multiple passes, the process can be very lengthy,

often taking twice the duration of the song itself or more (depending on your CPU). Because the comparison and fit

tests across the BPM range being checked are independent events, however, this process can be parallelized. In

addition, the test process itself is pure arithmetic calculations, which GPU units are well suited for. MATLAB also

supports some CUDA kernel integration4 and previous works have shown over 10x speedups in GPU-accelerated

music beat analysis5. By modifying the beat detection algorithm to run tests in parallel and on the GPU, it is possible

to significantly reduce the time needed to accurate detect the BPM of the loaded song files. This would allow for

significantly faster pattern generation times (compounded if the user wants to batch analyze an entire song library).

1
 http://www.monket.net/dancing-monkeys-v2/Main_Page

2
 http://www.monket.net/files/dancingmonkeys/DancingMonkeys.pdf

3
 http://www.idi.ntnu.no/~willa/papers/bpm.pdf

4
 http://www.mathworks.com/discovery/matlab-gpu.html

5
 http://blog.accelereyes.com/blog/2011/08/11/music-beat-analysis-with-jacket/

http://www.monket.net/dancing-monkeys-v2/Main_Page
http://www.monket.net/files/dancingmonkeys/DancingMonkeys.pdf
http://www.idi.ntnu.no/~willa/papers/bpm.pdf
http://www.mathworks.com/discovery/matlab-gpu.html
http://blog.accelereyes.com/blog/2011/08/11/music-beat-analysis-with-jacket/

